April 22nd, 2011

Кстати о птичках

http://mathoverflow.net/questions/62543/what-is-the-relation-between-hypocycloids-and-ideals-in-polynomial-rings-as-allud
http://www.ega-math.narod.ru/Arnold2.htm

Я не алгебраический геометр, конечно, но я написал пару статей по алгебраической геометрии. Я понятия не имею, что такое гипоциклоида. Может быть, я ее когда-то видел, но, безусловно, не сумел извлечь никакого смысла из увиденного.

Вопрос о форме поверхности, заданной уравнением xy = z2, в ситуации, когда отвечать на него предлагается немедленно, вводит меня в ступор, это экспериментальный факт. (За пять лет до означенного эксперимента я, натурально, прочитал учебник и получил пятерку на экзамене по университетскому курсу по этим самым квадратичным поверхностям; эксперимент показал, что это не помогло. Меня зачислили в аспирантуру НМУ, закрыв глаза на провал эксперимента.)

Боюсь, что я скорее уж отличу синицу от снегиря, чем циклоиду от гипоциклоиды. Пойду редактировать свои сверхабстрактные алгебро-геометрические рассуждения в эпигонски-обобщенной статье по гомологической алгебре, схоласт-недоучка.

Give credit where credit is due

В эпоху, когда целью цитирования в научных работах является то, что сформулировано в заголовке выше, никто уже не скрывает, что не читал цитируемых источников, и не стесняется ссылаться в таких формах, из которых очевидно, что минимальное знакомство с цитируемым материалом отсутствует.