Лёня Посицельский (posic) wrote,
Лёня Посицельский
posic

Категории контрамодулей как полные подкатегории категорий модулей - 2

Сегодня мне кажется, что, может быть, можно доказать такую теорему:

Пусть B -- категория моделей аддитивной κ-арной алгебраической теории (т.е., категория модулей над аддитивной κ-достижимой монадой T на категории множеств), и пусть P -- ее каноническая проективная образующая (cвободный T-модуль с одной образующей). Выберем множество X достаточно большой мощности (такой, что кардинал, следующий за мощностью X, не меньше κ), обозначим через Q прямую сумму X копий объекта P в категории B (свободный T-модуль с X образующими), и обозначим через S кольцо HomB(Q,Q)op.

Тогда функтор Ψ = HomB(Q,−) отождествляет B с полной подкатегорией в категории левых S-модулей, обладающей следующими свойствами:

1. Функтор вложения Ψ: B → S-mod -- (вполне строгий), точный и имеет левый сопряженный функтор Δ: S-mod → B;

2. Полная подкатегория Ψ(B) ⊂ S-mod замкнута относительно (не только ядер, коядер и бесконечных произведений, но также и) расширений;

3. Триангулированный функтор Ψ: D(B) → D(S-mod), индуцированный точным функтором вложения Ψ: B → S-mod, является вполне строгим;

4. Для каждого множества Y рассмотрим инъективный морфизм левых S-модулей S(Y) → HomB(Q,Q(Y)), где прямая сумма Y копий слева берется в категории левых S-модулей, а справа -- в категории B. Обозначим через LY коядро этого морфизма. Тогда полная подкатегория Ψ(B) ⊂ S-mod состоит в точности из всех таких левых S-модулей С, для которых HomS(LY,C) = 0 = ExtS1(LY,C) для всех множеств Y -- или, что оказывается в данном случае эквивалентным, из всех таких левых S-модулей C, для которых ExtSn(LY,C) = 0 для всех множеств Y и всех n ≥ 0.

Пункт 1 мы знали и раньше, пункт 2 выводится из пункта 3, и пункт 4 выводится из пункта 2. Идея доказательства пункта 3 состоит в том, что функтор Δ переводит проективные S-модули в "λ-плоские S-модули" (λ-фильтрованные индуктивные пределы проективных S-модулей с меньше, чем λ образующими, где λ -- следующий кардинал после мощности множества X), а короткие точные последовательности λ-плоских S-модулей -- в короткие точные последовательности.

Для этого доказательства необходимо развить теорию λ-плоских модулей над кольцом, где λ -- регулярный кардинал. В частности, как минимум, такая теория должна доказывать, что ядро сюръективного морфизма λ-плоских модулей является λ-плоским модулем (также, расширение, и т.д.) Далее, важно, что функтор Δ сохраняет точность "λ-чистых" (λ-фильтрованных индуктивных пределов расщепимых) точных троек, и в частности, таких точных троек, в которых фактормодуль λ-плоский.
Tags: math10
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments