Лёня Посицельский (posic) wrote,
Лёня Посицельский
posic

Комодули и контрамодули - 2

Продолжение постинга http://posic.livejournal.com/1294642.html

Пусть C -- коассоциативное, коунитальное кокольцо над ассоциативным кольцом A, являющееся проективным левым A-модулем. Рассмотрим три категории:

(i) категория правых C-комодулей comod-C;
(ii) категория дискретных правых модулей discr-R над топологическим ассоциативным кольцом R = HomC(C,C)op (кольцо эндоморфизмов левого C-комодуля C с топологией, описанной в постинге http://posic.livejournal.com/1287429.html и далее по ссылкам);
(iii) категория Rex(C-contra) всех функторов из категории левых C-контрамодулей С-contra в категорию абелевых групп Ab, сохраняющих копределы.

Утверждается, что три категории (i)-(iii) естественным образом эквивалентны. Естественные функторы между ними образуют круговую диаграмму:

(i) → (ii): чтобы определить структуру правого R-модуля на правом C-комодуле N, нужно использовать изоморфизм N □C C = N. Ввиду этого изоморфизма, ясно, что эндоморфизмы левого C-комодуля C действуют слева на N. Поскольку образ каждого элемента из N в N □C C ⊂ N ⊗A C выражается в виде тензора, в который входит только конечное число элементов из C, это действие дискретно.

(ii) → (iii): категория C-contra отождествляется с категорией R-contra, как по ссылке (достаточно отождествить категории проективных объектов, для чего достаточно отождествить монады на категории множеств), после чего дискретному правому R-контрамодулю N сопоставляется функтор контратензорного произведения левых R-контрамодулей с ним N ⊙R −.

(iii) → (i): пусть F: C-contra → Ab -- функтор, сохраняющий копределы. Тогда F(HomC(C,C)) ⊗A C = F(HomC(C, C⊗AC)), поскольку ко-контра соответствие HomC(C,−) переводит прямые суммы копроективных C-комодулей в прямые суммы проективных C-контрамодулей. Теперь морфизм коумножения C → С ⊗A C индуцирует искомое отображение C-кодействия N → N ⊗A C на правом A-модуле N = F(HomC(C,C)).

Пусть теперь S -- полуассоциативная, полуунитальная полуалгебра над кокольцом C, являющаяся копроективным левым C-комодулем. Тогда аналогичные три категории тоже эквивалентны между собой:

(i) категория правых S-полумодулей simod-S;
(ii) категория дискретных правых модулей discr-R над топологическим ассоциативным кольцом R = HomS(S,S)op (кольцо эндоморфизмов левого S-полумодуля S с топологией, описанной по ссылке выше);
(iii) категория Rex(S-sicntr) всех функторов из категории левых S-полуконтрамодулей S-sicntr в категорию абелевых групп, сохраняющих копределы.

Круговая диаграмма функторов между ними строится так же, как выше; выпишем подробнее только первую и третью (самую интересную) конструкцию:

(i) → (ii): чтобы определить структуру правого R-модуля на правом S-полумодуле N, нужно использовать изоморфизм N ◊S S = N. Ввиду этого изоморфизма, ясно, что эндоморфизмы левого S-полумодуля S действуют слева на N.

Чтобы убедиться, что это действие дискретно, достаточно заметить, что (эндоморфизмы левого S-полумодуля определяются своими ограничениями на C, а) действие эндоморфизма S на конкретном элементе n из N определяется его действием на образах при отображении полуединицы в S тех элементов из C, которые входят в какое-нибудь выражение для тензора в N ⊗A C, являющегося образом элемента n при отображении правого C-кодействия.

(iii) → (i): пусть G: S-sicntr → Ab -- функтор, сохраняющий копределы. Компонуя ко-контра/полуко-полуконтра соответствие с функтором индуцирования полупроективных левых S-полумодулей с копроективных левых C-комодулей, получаем функтор из категории проективных левых C-контрамодулей в категорию проективных левых S-полуконтрамодулей, сохраняющий бесконечные прямые суммы и переводящий HomC(C,C) в HomS(S,S). Функтор этот можно однозначно продолжить до сохраняющего копределы функтора C-contra → S-sicntr. Компонуя полученный функтор с функтором G, получаем сохраняющий копределы функтор F: C-contra → Ab и связанный с ним правый C-комодуль N.

Теперь абелева группа/правый A-модуль N = G(HomS(S,S)) = F(HomC(C,C)) оказывается правым C-комодулем. Далее, имеем G(HomS(S,S)) □C S = G(HomS(S, S□CS)), поскольку полуко-полуконтра соответствие HomS(S,−) переводит прямые суммы полупроективных S-полумодулей в прямые суммы проективных S-полуконтрамодулей. Наконец, морфизм полуумножения S □C S → S индуцирует искомое отображение S-полудействия N □C S → N.
Tags: math10
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 4 comments