Лёня Посицельский (posic) wrote,
Лёня Посицельский
posic

Критерий зануления элемента тензорного произведения

Век живи, век учись: оказывается, настоящим суровым алгебраистам известен критерий обращения в ноль элемента тензорного произведения двух модулей над ассоциативным кольцом. Вот он, этот критерий.

Пусть N -- правый R-модуль с образующими (не свободными, просто какими-то образующими элементами) ni, и пусть M -- левый R-модуль с образующими (тоже не свободными, просто какими-то образующими) mj. Пусть t -- элемент группы N ⊗R M, записанный в виде ∑i ni ⊗ vi, где vi -- какие-то элементы модуля M, причем все из них, кроме конечного числа, равны нулю. Тогда t = 0 в N ⊗R M тогда и только тогда, когда существуют элементы аij кольца R, все из которых, кроме конечного числа, равны нулю, такие что vi = ∑j aij mj в M для всех i и ∑j ni aij = 0 в N для всех j.

Доказательство (оно требует немного подумать насчет логики построения подобного аргумента, но в конечном итоге достаточно прямолинейно) предоставляется читателю.
Tags: math10
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 2 comments